			Co	st to retrofit				
			01	ne Issaquah				
			cla	ass vessel to				
				LNG				
Design			\$	300,000				
Construction			\$	6,400,000				
CE			\$	200,000				
OFE			\$	6,000,000				
Contingency			\$	1,100,000				
Total			\$	14,000,000	_			
			Fue	el Costs	gallons per year			
	\$3.65	Diesel/Gallon	\$	3,854,400	1,056,000			
	\$1.25	LNG/Per Gallon	\$	2,184,600	1,747,680			
			\$	1,669,800				
\$14M divided by \$1.6M = years to p	8.4							

Converting an Issaquah class vessel at a cost of \$14M has the potential to save \$1.6M in fuel costs per year which would have break even point of 8.4 years. This could provide a 25% reduction in CO2 emmissions by using in LNG, and the elimination of sulphur oxides SOx, 95% reduction in nitrous oxides NOx, and the elimination of particulate emmisions on the gallons of diesel that we would be replacing with LNG. Similar savings can be achieved on other vessels in the class.

			2013		2014		2015		2016		2017		2018		2019		202	D	2021	
LNG Conversion & \$1.25/G fuel Cost		\$	14.0	\$	16.2	\$	18.4	\$	20.6	\$	22.7	\$	24.9	\$	27.1	\$	29.3	\$	31.5	
Continuing to run on Diesel at \$3.65/g		\$	3.9	\$	7.7	\$	11.6	\$	15.4	\$	19.3	\$	23.1	\$	27.0	\$	30.8	\$	34.7	
gallons per year						gallons per year				Fuel \$	in Millions pe	er yea	r							
\$	3.65	Desiel/Gallon	า			\$	3,854,400	1,	056,000			\$	3.85							
\$	1.25	LNG/Per Gallon				\$	2,184,600	1,	747,680			\$	2.18							

Assumptions:

Fuel consumtion based on the Bremerton route Current Fuel prices diesel \$3.85 Current Fuel prices LNG \$1.25 \$14M estimated cost for retrofit